

PROGRESSIVE CAVITY PUMPS and WELLHEAD DRIVE SYSTEMS

Our Company

OILTECHSYSTEMS OÜ is a part of a group of companies working in oil and gas industry which produce, engineer and develop systems with the most advanced plastic technologies for the conduction free of corrosion of all kind of fluids at high pressures and temperatures.

The group is working worldwide providing services, installations, products and performing turn key projects.

Content

Progressive cavity pump (PCP) operation principle	3
PCP advantages	4
PCP applications	5
PCP specification sheets	б
PCP specification	9
PCP elastomer guideline	10
PCP spare parts	11
PCP wellhead drive motor	12
	12
PCP wellhead drive motor technical parameters	13
PCP wellhead drive motor applications	15

n S

Progressive cavity pump

oiltech

The operation principle of the progressive cavity pump (PCP) is a helical rotor of steel with circular profile that rotates inside a stator with double the pitch, that is made of an elastomer, normally vulcanized inside a carcass of carbon steel.

Depending on the geometry of the rotor and the stator, sealed cavities between suction and discharge are formed. The opening and closing of these cavities creates a depression in the suction nozzle, which causes the fluid to be suctioned and develops a volumetric flow directly proportional to its rotation.

The progressive cavity pump operation principle allows the pumping of highly viscous fluids, chemically aggressive and containing solids up to a certain size, where the centrifugal pumps do not have a good performance.

Progressive cavity pumps have many advantages. Here are some of them:

- Progressive cavity pump is able to operate with much lower suction pressure than rod pumps. As a result, the well column requires less fluid to feed the pump. Under atmospheric suction pressure, it can function with the fluid level of the well close to the suction intake of the pump without affecting its performance. This enables well production to be increased to the maximum level of fluid available.
- ✓ The PCP pumps do not require a heater, even when pumping high viscosity oils.
- ✓ Pumps oil and water with solids.
- \checkmark No internal valves to clog or gas lock.
- Continuous smooth operation helps in preventing and controlling production of undesired reservoir fluids and particles.
- ✓ Minimal maintenance costs.

Some applications of Progressive cavity pumps:

Pumping of sewage

Pump with diesel engine

Pump in a sugar and alcohol plant

Pumping of sulfuric acid in a plant

Main applications:

- ✓ Heavy crude
- ✓ Medium crude
- ✓ Coal Bed Methane (CBM) / Coal Seam Gas (CSG)
- ✓ Shale oil and water

PCP specification sheet

WATER WITH 5% SOLUBLE OIL TEMPERATURE 60°C +/- 10°C

6

€

oiltech

PCP specification sheet

2 7/8" PUMPS							
	AVAILABLE MODELS	9OT-1900	9OT-1900 12OT1200		16OT1000		
Pun	np Performance (m³/day @ 100RPM)	9	9 12		16		
Pun	np Lift m (ft)	1900 (6234)	1200 (3935)	600 (1968)	1000 (3280)		
Nor	ninal Pressure kPa (psi)	18632 (2702)	11765 (1700)	5885 (850)	9800 (1420)		
Nor	ninal Lift Torque N.m (ft.lbs)	200 (145) 120 (88) 200(145)					
٢	Rotor Superior Connection		7/8" A	PI			
10F	Rotor Head Diameter	44 mm					
Sol	Rotor Total Length	43	04	2992	4304		
	Minimum Tubing Size	2 7/8" (Min. DRIFT 48mm)					
	External Stator Diameter		2 7/8	"			
~	External Coupling Diameter		89 mr	n			
TO	Superior Connection	2 7/8" NU					
SТА	Stator Total Length	23	63	3675	2363		
	Tag Bar Length	504					
	Inferior Tag Bar Connection	2 7/8" NU					
		3 1/2" PUMP	S				
AVAILABLE MODELS		16OT1900	160T1900 200T1200		22OT-1000		
Pun	an Darformanco (m ³ /day @ 100PDM)	10	16 20				
-	ip Perjoinnunce (in 700y @ 100KPivi)	16	20	22	22		
Pun	np Lift m (ft)	1900 (6234)	20 1200 (3935)	22 600 (1968)	22 1000 (3280)		
Pun Nor	np Ferjoiniance (m 700y @ 100kFM) np Lift m (ft) ninal Pressure kPa (psi)	16 1900 (6234) 18632 (2702)	20 1200 (3935) 11765 (1700)	22 600 (1968) 5885 (850)	22 1000 (3280) 9800 (1420)		
Pun Nor Nor	np Ferjornance (m 700y @ 1006FW) np Lift m (ft) ninal Pressure kPa (psi) ninal Lift Torque N.m (ft.lbs)	16 1900 (6234) 18632 (2702) 195	20 1200 (3935) 11765 (1700) (140)	22 600 (1968) 5885 (850) 330 (240)	22 1000 (3280) 9800 (1420) 195(140)		
Pun Nor Nor	np Ferjornance (m yady @ 1006FM) np Lift m (ft) ninal Pressure kPa (psi) ninal Lift Torque N.m (ft.lbs) Rotor Superior Connection	16 1900 (6234) 18632 (2702) 195	20 1200 (3935) 11765 (1700) (140) 1" AF	22 600 (1968) 5885 (850) 330 (240)	22 1000 (3280) 9800 (1420) 195(140)		
Pun Nor Nor	np Performance (m Yady @ 1006PM) np Lift m (ft) ninal Pressure kPa (psi) ninal Lift Torque N.m (ft.lbs) Rotor Superior Connection Rotor Head Diameter	16 1900 (6234) 18632 (2702) 195	20 1200 (3935) 11765 (1700) (140) 1" AF 60mr	22 600 (1968) 5885 (850) 330 (240) Pl n	22 1000 (3280) 9800 (1420) 195(140)		
Pun Nor Nor	np Performance (m Yudy @ 100kPin) np Lift m (ft) ninal Pressure kPa (psi) ninal Lift Torque N.m (ft.lbs) Rotor Superior Connection Rotor Head Diameter Rotor Total Length	16 1900 (6234) 18632 (2702) 195	20 1200 (3935) 11765 (1700) (140) 1" AF 60mr 44	22 600 (1968) 5885 (850) 330 (240) 71 n 3444	22 1000 (3280) 9800 (1420) 195(140) 4844		
Pun Nor Nor	np Performance (m Yudy @ 100kPin) np Lift m (ft) ninal Pressure kPa (psi) ninal Lift Torque N.m (ft.lbs) Rotor Superior Connection Rotor Fuead Diameter Rotor Total Length Minimum Tubing Size	16 1900 (6234) 18632 (2702) 195	20 1200 (3935) 11765 (1700) (140) 1" AF 60mr 44 3 1/2" (Min. DR	22 600 (1968) 5885 (850) 330 (240) 'I n 3444 IFT 60mm)	22 1000 (3280) 9800 (1420) 195(140) 4844		
Pun Nor Nor	In Performance (In Yody @ 100KPW) Inp Lift m (ft) Ininal Pressure kPa (psi) Ininal Lift Torque N.m (ft.lbs) Rotor Superior Connection Rotor Head Diameter Rotor Total Length Minimum Tubing Size External Stator Diameter	16 1900 (6234) 18632 (2702) 195	20 1200 (3935) 11765 (1700) (140) 1" AF 60mr 44 3 1/2" (Min. DF 3 1/2	22 600 (1968) 5885 (850) 330 (240) 71 n 3444 IFT 60mm) "	22 1000 (3280) 9800 (1420) 195(140) 4844		
Pun Nor Nor Nor	In Performance (In Yody @ 100KPW) Inp Lift m (ft) Ininal Pressure kPa (psi) Ininal Lift Torque N.m (ft.lbs) Rotor Superior Connection Rotor Head Diameter Rotor Total Length Minimum Tubing Size External Stator Diameter External Coupling Diameter	16 1900 (6234) 18632 (2702) 195 48 48 48 48	20 1200 (3935) 11765 (1700) (140) 1" AF 60mr 44 3 1/2" (Min. DF 3 1/2 106m	22 600 (1968) 5885 (850) 330 (240) 1 1 1 1 3444 xIFT 60mm) " m	22 1000 (3280) 9800 (1420) 195(140) 4844		
Pun Nor Nor Nor	In Performance (In Yody @ 100kPin) Inp Lift m (ft) Ininal Pressure kPa (psi) Ininal Lift Torque N.m (ft.lbs) Rotor Superior Connection Rotor Head Diameter Rotor Total Length Minimum Tubing Size External Stator Diameter External Coupling Diameter Superior Connection	16 1900 (6234) 18632 (2702) 195	20 1200 (3935) 11765 (1700) (140) (140) 1" AF 60mr 44 3 1/2" (Min. DF 3 1/2 106m 3 1/2"	22 600 (1968) 5885 (850) 330 (240) 1 1 3444 IIFT 60mm) " m NU	22 1000 (3280) 9800 (1420) 195(140) 4844		
STATOR ROTOR No.	In Performance (In Yody @ 100kPin) Inp Lift m (ft) Ininal Pressure kPa (psi) Ininal Lift Torque N.m (ft.lbs) Rotor Superior Connection Rotor Head Diameter Rotor Total Length Minimum Tubing Size External Stator Diameter External Coupling Diameter Superior Connection Stator Total Length	16 1900 (6234) 18632 (2702) 195	20 1200 (3935) 11765 (1700) (140) (140) 1" AF 60mr 44 3 1/2" (Min. DF 3 1/2 106m 3 1/2" 00	22 600 (1968) 5885 (850) 330 (240) 1 3444 IFT 60mm) " m NU 2800	22 1000 (3280) 9800 (1420) 195(140) 4844 4844 4844		
STATOR ROTOR Nou	In Performance (In Yody & TookPin) Inp Lift m (ft) Ininal Pressure kPa (psi) Ininal Lift Torque N.m (ft.lbs) Rotor Superior Connection Rotor Head Diameter Rotor Total Length Minimum Tubing Size External Stator Diameter External Coupling Diameter Superior Connection Stator Total Length Tag Bar Length	16 1900 (6234) 18632 (2702) 195	20 1200 (3935) 11765 (1700) (140) (140) 1" AF 60mr 44 3 1/2" (Min. DF 3 1/2 106m 3 1/2" 00 504	22 600 (1968) 5885 (850) 330 (240) 91 n 3444 IIFT 60mm) " m NU 2800	22 1000 (3280) 9800 (1420) 195(140) 4844 4844 4844		

TEMPERATURE 60°C +/- 10°C

6

oiltech

SYSTEM

tion S

g 0 П П > -_ 0 Ð -U _ ----_ g Π р

PCP specification sheet

TEST CONDITIONS WATER WITH 5% SOLUBLE OIL TEMPERATURE 60°C +/- 10°C

 \sim

oiltech

PCP specification

MODEL	ISO MODEL	A(in)	B(mm)	C(mm)	D(mm)	E(mm)	F(in)	Tubing min ø(in)	Casing min ø(in)	Drive head		
20T - 1900	002 19 041	-			2160	2642					OTD-1H-15	
2,50T – 1200	003 12 041				20	2100	2045		3/4"			
3OT - 600	003 06 041		20	1350	1833		(1/2")			OTD-1H-9		
3OT - 1000	003 10 041	2 2 /0"		2160	2643	410						
40T – 1900	004 19 041	2 5/0		2625	2120	410				OTD-1H-15		
50T – 1200	005 12 041		25	2025	5150		15/16"	22/0"	41/2"			
60T - 600	007 06 041		25	1688	2193		(5/8")	25/0	41/2	OTD-1H-9		
60T - 1000	007 10 041			2625	3130							
90T – 1900	010 19 050	2 7/8" 32	2 7/8"	2 7 /0"	27/0" 22	3675	1201					OTD-1H-15
120T -1200	012 12 050					2 7 /0" 22	22	4304		13/16"		
160T - 600	016 06 050			32	2450	3080		(7/8")			OTD-1H-9	
160T - 1000	016 10 050			3675	4304	F04						
160T - 1900	016 19 050	2.1./2			4200	1011	504				OTD-1H-9	
200T - 1200	026 10 050		10	4200	4844		13/8"	/8" L") 27/8"	F1/2"	OTD-1H-15		
22OT - 600	021 12 050	51/2	40	2800	3444		(1")		51/2	OTD 111.0		
220T - 1000	026 06 050			4200	4844					010-18-9		

NOTE: When tubing diameter is smaller than stator diameter, the first production tube connected to the stator (orbit tube) must have the same diameter as the pump stator

The selection of an elastomer for a Progressive cavity pump depends on the crude composition.

The table below shows the main properties of the most common elastomer in Progressive cavity pump applications.

MAIN PROPERTIES	NBRM	NBRA	HNBR	
Hardness (Shore A)	65	65	70	
Maximum Temperature (°F/°C)	195/90	210/100	300/150	
Service Temperature (°F/°C)	175/80	190/88	265/130	
Mechanical Resistance	++	++	++	
Abrasion Resistance	++	+	++	
Carbon Dioxide (CO ₂)	-	+	++	
Hydrogen Sulfide (H ₂ S)	-	-	++	
Aromatic's Resistance	+	++	+	
Hot Water	-	+	+	
Steam			-	
APPLICATION	Heavy crudes with low content of aromatic and/or presence of abrasives	Light and medium crudes (26<°API<40) with high aromatic contents.	Heavy and medium crudes (with low aromatic contents) under high temperature or presence of H ₂ S	

Legend:

++ Very good +Good

-Weak

HARD CHROMIUM LAYER FOR ROTOR				
Normal	0,12 mm (0.005")			
Thick	0,30 mm (0.012")			

 \sim

Complete line of rotors and stators for Progressive cavity pumps.

Stators for replacement at progressive cavity pumps.

ROTORS

Rotors for replacement at progressive cavity pumps.

Wellhead drive motor

oiltech

Wellhead drive motor main advantages:

- PCP wellhead drive motor is attached directly to the wellhead, eliminating the concrete base required by some other pumping systems.
- The space required for installation on the well is much smaller and lower than many other artificial lift systems.
- Unlike other pumping systems, PCP system has a much lower risk of accident if people or animals come near to the wellhead.
- ✓ The API flange allows direct connection without adapters when changing from other systems to the PCP system.
- The simple design minimizes maintenance and requires little lubrication.
- The bearing system of the PCP wellhead drive motor provides minimal vibration.
- It can be easily adjusted to production rates or changing rotations by mechanical process or with speed controllers (or with a simple change of acceleration if using internal combustion motors).
- Equipped with safety device to prevent the polished rod from ejecting.
- Hydrodynamic brake system for automatic and safe controlled release of energy stored at rod string (backspin).
- Safe against leakage and mechanical failures.

Wellhead drive motor technical parameters

The table below shows technical parameters of the basic wellhead drive motor models.

MODEL	OTD-1H	OTD-2H	OTD-1H-M	OTD-2H
Shaft Mount Type:	Vertical Input Shaft	Vertical Input Shaft	Vertical Input Shaft	Right Angle Input Shaft
Вох Туре:	Bearing box	Bearing box	Bearing box	Bearing box
Shaft Type:	Hollow shaft	Hollow shaft	Solid shaft	Hollow shaft
Wellhead Connection (mm): (in):	79,375 3 ⅓	79,375 3 ½	79,375 3 ½	79,375 3 ⅓
Polish Rod Size (mm): (in):	38,1 1 ½	38,1 1 ½	N/A	38,1 1 ½
Sealing System:	Packing Rings	Packing Rings	Packing Rings	Packing Rings
Max. Torque Rating at Polish Rod (Nm):	5600	6535	5600	1430
Max. Axial Load Capacity (ton):	9/12/15	9/15/30	9/15	9/15
Max. Power (kW): (hp):	44,74 60	74,57 100	44,74 60	44,74 60
Max. Speed at Polish Rod (RPM):	600	600	600	600
Gearbox - Gear Reduction:	N/A	N/A	N/A	4,1
Hydraulics Compatible:	Yes	Yes	Yes	Yes
Belts Compatible:	Yes	Yes	No	Yes
Maximum Driven Sheave Size (mm):	600	711		250
Minimum Driven Sheave Size (mm):	500	500		125
Maximum Driving Sheave Size (mm):	240	240	N/A	250
Minimum Driving Sheave Size (mm):	130	130		125
Maximum Sheave Ratio:	5	6		2
Minimum Sheave Ratio:	2	2		1

S

oiltech

Β

Wellhead drive motor **oiltech** technical parameters

Wellhead drive motor can be supplied with different options of stuffing boxes, according to the drive model and wellhead connection requirement.

Characteristics:

- Provides continuous compression adjustment of packing elements from a spring loaded assembly.
- Bronze guide bushings to keep the polished rod aligned to prevent the stuffing box from premature wear.
- Dual protection (top & bottom) against leakage.
- 1" NPT bottom leakage drain.
- Open access to run a clamp to lock the polished rod in position for maintenance or removal of the drive.

Wellhead drive motors are supplied with a Hydrodynamic Brake System. This system is designed to release the resultant torque stored at the rod string by the time the prime mover is shut-down (maintenance, power failure, etc). The full release of the stored energy is made gradually in a continuous and uniform way to avoid the risk of accidents.

Some applications of wellhead drive motor:

Drive head with hydraulic brake in operation

Right Angle drive head

Drive head with hydrodynamic brake retarder in operation

OILTECHSYSTEMS OÜ

Tallinn, Estonia

+ 372 617-04-31

info@oiltechservices.net www.oiltechsystems.com

quality integrity innovations